Aconitine induces cardiomyocyte damage by mitigating BNIP3‐dependent mitophagy and the TNFα‐NLRP3 signalling axis
نویسندگان
چکیده
منابع مشابه
Autophagy and mitophagy in cellular damage control☆
Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and ...
متن کاملBicarbonate Increases Ischemia-Reperfusion Damage by Inhibiting Mitophagy
During an ischemic event, bicarbonate and CO2 concentration increase as a consequence of O2 consumption and lack of blood flow. This event is important as bicarbonate/CO2 is determinant for several redox and enzymatic reactions, in addition to pH regulation. Until now, most work done on the role of bicarbonate in ischemia-reperfusion injury focused on pH changes; although reperfusion solutions ...
متن کاملMyocardin induces cardiomyocyte hypertrophy.
In response to stress signals, postnatal cardiomyocytes undergo hypertrophic growth accompanied by activation of a fetal gene program, assembly of sarcomeres, and cellular enlargement. We show that hypertrophic signals stimulate the expression and transcriptional activity of myocardin, a cardiac and smooth muscle-specific coactivator of serum response factor (SRF). Consistent with a role for my...
متن کاملThe Oxygen-Rich Postnatal Environment Induces Cardiomyocyte Cell-Cycle Arrest through DNA Damage Response
The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arr...
متن کاملCardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation
Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium.Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA) and 5-Aza-2-Deoxycytidine (5-aza-dC). The treated cells were permeabilized w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Proliferation
سال: 2019
ISSN: 0960-7722,1365-2184
DOI: 10.1111/cpr.12701